Applies a calibration to a set of existing predictions
Usage
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)
# S3 method for data.frame
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)
# S3 method for tune_results
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)
# S3 method for cal_object
cal_apply(.data, object, pred_class = NULL, parameters = NULL, ...)
Arguments
- .data
An object that can process a calibration object.
- object
The calibration object (
cal_object
).- pred_class
(Optional, classification only) Column identifier for the hard class predictions (a factor vector). This column will be adjusted based on changes to the calibrated probability columns.
- parameters
(Optional) An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. Applies only to
tune_results
objects.- ...
Optional arguments; currently unused.
Details
cal_apply()
currently supports data.frames only. It extracts the truth
and
the estimate columns names from the calibration object.
Examples
# ------------------------------------------------------------------------------
# classification example
w_calibration <- cal_estimate_logistic(segment_logistic, Class)
cal_apply(segment_logistic, w_calibration)
#> # A tibble: 1,010 × 3
#> .pred_poor .pred_good Class
#> <dbl> <dbl> <fct>
#> 1 0.974 0.0258 poor
#> 2 0.930 0.0700 poor
#> 3 0.220 0.780 good
#> 4 0.205 0.795 good
#> 5 0.976 0.0244 poor
#> 6 0.590 0.410 good
#> 7 0.777 0.223 good
#> 8 0.135 0.865 good
#> 9 0.977 0.0231 poor
#> 10 0.770 0.230 poor
#> # ℹ 1,000 more rows