
Package index
-
threshold_perf() - Generate performance metrics across probability thresholds
-
append_class_pred() - Add a
class_predcolumn
-
make_class_pred()make_two_class_pred() - Create a
class_predvector from class probabilities
-
class_pred() - Create a class prediction object
-
as_class_pred() - Coerce to a
class_predobject
-
is_class_pred() - Test if an object inherits from
class_pred
-
reportable_rate() - Calculate the reportable rate
-
is_equivocal()which_equivocal()any_equivocal() - Locate equivocal values
-
levels(<class_pred>) - Extract
class_predlevels
-
int_conformal_cv() - Prediction intervals via conformal inference CV+
-
int_conformal_full() - Prediction intervals via conformal inference
-
int_conformal_quantile() - Prediction intervals via conformal inference and quantile regression
-
int_conformal_split() - Prediction intervals via split conformal inference
-
control_conformal_full() - Controlling the numeric details for conformal inference
-
predict(<int_conformal_cv>)predict(<int_conformal_full>)predict(<int_conformal_quantile>)predict(<int_conformal_split>) - Prediction intervals from conformal methods
-
bound_prediction() - Truncate a numeric prediction column
-
segment_naive_bayessegment_logistic - Image segmentation predictions
-
species_probs - Predictions on animal species
-
boosting_predictionsboosting_predictions_oobboosting_predictions_test - Boosted regression trees predictions
-
cal_estimate_beta() - Uses a Beta calibration model to calculate new probabilities
-
cal_estimate_isotonic() - Uses an Isotonic regression model to calibrate model predictions.
-
cal_estimate_isotonic_boot() - Uses a bootstrapped Isotonic regression model to calibrate probabilities
-
cal_estimate_linear() - Uses a linear regression model to calibrate numeric predictions
-
cal_estimate_logistic() - Uses a logistic regression model to calibrate probabilities
-
cal_estimate_multinomial() - Uses a Multinomial calibration model to calculate new probabilities
-
cal_estimate_none() - Do not calibrate model predictions.
-
cal_apply() - Applies a calibration to a set of existing predictions
-
cal_validate_beta() - Measure performance with and without using Beta calibration
-
cal_validate_isotonic() - Measure performance with and without using isotonic regression calibration
-
cal_validate_isotonic_boot() - Measure performance with and without using bagged isotonic regression calibration
-
cal_validate_linear() - Measure performance with and without using linear regression calibration
-
cal_validate_logistic() - Measure performance with and without using logistic calibration
-
cal_validate_multinomial() - Measure performance with and without using multinomial calibration
-
cal_validate_none() - Measure performance without using calibration
-
collect_metrics(<cal_rset>) - Obtain and format metrics produced by calibration validation
-
collect_predictions(<cal_rset>) - Obtain and format predictions produced by calibration validation
-
cal_plot_breaks() - Probability calibration plots via binning
-
cal_plot_logistic() - Probability calibration plots via logistic regression
-
cal_plot_regression() - Regression calibration plots
-
cal_plot_windowed() - Probability calibration plots via moving windows