Skip to content

Thresholds

threshold_perf()
Generate performance metrics across probability thresholds

Create class predictions

append_class_pred()
Add a class_pred column
make_class_pred() make_two_class_pred()
Create a class_pred vector from class probabilities

Class predictions

class_pred()
Create a class prediction object
as_class_pred()
Coerce to a class_pred object
is_class_pred()
Test if an object inherits from class_pred
reportable_rate()
Calculate the reportable rate
is_equivocal() which_equivocal() any_equivocal()
Locate equivocal values
levels(<class_pred>)
Extract class_pred levels

Regression predictions

int_conformal_cv()
Prediction intervals via conformal inference CV+
int_conformal_full()
Prediction intervals via conformal inference
int_conformal_quantile()
Prediction intervals via conformal inference and quantile regression
int_conformal_split()
Prediction intervals via split conformal inference
control_conformal_full()
Controlling the numeric details for conformal inference
predict(<int_conformal_full>) predict(<int_conformal_cv>) predict(<int_conformal_quantile>) predict(<int_conformal_split>)
Prediction intervals from conformal methods

Data

segment_naive_bayes segment_logistic
Image segmentation predictions
species_probs
Predictions on animal species
boosting_predictions boosting_predictions_oob boosting_predictions_test
Boosted regression trees predictions

Calibration

cal_estimate_beta()
Uses a Beta calibration model to calculate new probabilities
cal_estimate_isotonic()
Uses an Isotonic regression model to calibrate model predictions.
cal_estimate_isotonic_boot()
Uses a bootstrapped Isotonic regression model to calibrate probabilities
cal_estimate_linear()
Uses a linear regression model to calibrate numeric predictions
cal_estimate_logistic()
Uses a logistic regression model to calibrate probabilities
cal_estimate_multinomial()
Uses a Multinomial calibration model to calculate new probabilities
cal_apply()
Applies a calibration to a set of existing predictions

Calibration Validation

cal_validate_beta()
Measure performance with and without using Beta calibration
cal_validate_isotonic()
Measure performance with and without using isotonic regression calibration
cal_validate_isotonic_boot()
Measure performance with and without using bagged isotonic regression calibration
cal_validate_linear()
Measure performance with and without using linear regression calibration
cal_validate_logistic()
Measure performance with and without using logistic calibration
cal_validate_multinomial()
Measure performance with and without using multinomial calibration
collect_metrics(<cal_rset>)
Obtain and format metrics produced by calibration validation
collect_predictions(<cal_rset>)
Obtain and format predictions produced by calibration validation

Calibration Plots

cal_plot_breaks()
Probability calibration plots via binning
cal_plot_logistic()
Probability calibration plots via logistic regression
cal_plot_regression()
Regression calibration plots
cal_plot_windowed()
Probability calibration plots via moving windows