Function reference
-
threshold_perf()
- Generate performance metrics across probability thresholds
-
append_class_pred()
- Add a
class_pred
column
-
make_class_pred()
make_two_class_pred()
- Create a
class_pred
vector from class probabilities
-
class_pred()
- Create a class prediction object
-
as_class_pred()
- Coerce to a
class_pred
object
-
is_class_pred()
- Test if an object inherits from
class_pred
-
reportable_rate()
- Calculate the reportable rate
-
is_equivocal()
which_equivocal()
any_equivocal()
- Locate equivocal values
-
levels(<class_pred>)
- Extract
class_pred
levels
-
int_conformal_cv()
- Prediction intervals via conformal inference CV+
-
int_conformal_full()
- Prediction intervals via conformal inference
-
int_conformal_quantile()
- Prediction intervals via conformal inference and quantile regression
-
int_conformal_split()
- Prediction intervals via split conformal inference
-
control_conformal_full()
- Controlling the numeric details for conformal inference
-
predict(<int_conformal_full>)
predict(<int_conformal_cv>)
predict(<int_conformal_quantile>)
predict(<int_conformal_split>)
- Prediction intervals from conformal methods
-
segment_naive_bayes
segment_logistic
- Image segmentation predictions
-
species_probs
- Predictions on animal species
-
boosting_predictions
boosting_predictions_oob
boosting_predictions_test
- Boosted regression trees predictions
-
cal_estimate_beta()
- Uses a Beta calibration model to calculate new probabilities
-
cal_estimate_isotonic()
- Uses an Isotonic regression model to calibrate model predictions.
-
cal_estimate_isotonic_boot()
- Uses a bootstrapped Isotonic regression model to calibrate probabilities
-
cal_estimate_linear()
- Uses a linear regression model to calibrate numeric predictions
-
cal_estimate_logistic()
- Uses a logistic regression model to calibrate probabilities
-
cal_estimate_multinomial()
- Uses a Multinomial calibration model to calculate new probabilities
-
cal_apply()
- Applies a calibration to a set of existing predictions
-
cal_validate_beta()
- Measure performance with and without using Beta calibration
-
cal_validate_isotonic()
- Measure performance with and without using isotonic regression calibration
-
cal_validate_isotonic_boot()
- Measure performance with and without using bagged isotonic regression calibration
-
cal_validate_linear()
- Measure performance with and without using linear regression calibration
-
cal_validate_logistic()
- Measure performance with and without using logistic calibration
-
cal_validate_multinomial()
- Measure performance with and without using multinomial calibration
-
collect_metrics(<cal_rset>)
- Obtain and format metrics produced by calibration validation
-
collect_predictions(<cal_rset>)
- Obtain and format predictions produced by calibration validation
-
cal_plot_breaks()
- Probability calibration plots via binning
-
cal_plot_logistic()
- Probability calibration plots via logistic regression
-
cal_plot_regression()
- Regression calibration plots
-
cal_plot_windowed()
- Probability calibration plots via moving windows