Do not calibrate model predictions.
Usage
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
# S3 method for class 'data.frame'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...,
.by = NULL
)
# S3 method for class 'tune_results'
cal_estimate_none(
.data,
truth = NULL,
estimate = dplyr::starts_with(".pred"),
parameters = NULL,
...
)
# S3 method for class 'grouped_df'
cal_estimate_none(.data, truth = NULL, estimate = NULL, parameters = NULL, ...)
Arguments
- .data
An ungrouped
data.frame
object, ortune_results
object, that contains predictions and probability columns.- truth
The column identifier for the true outcome results (that is factor or numeric). This should be an unquoted column name.
- estimate
A vector of column identifiers, or one of
dplyr
selector functions to choose which variables contains the class probabilities or numeric predictions. It defaults to the prefix used by tidymodels (.pred_
). For classification problems, the order of the identifiers will be considered the same as the order of the levels of thetruth
variable.- parameters
(Optional) An optional tibble of tuning parameter values that can be used to filter the predicted values before processing. Applies only to
tune_results
objects.- ...
Additional arguments passed to the models or routines used to calculate the new probabilities.
- .by
The column identifier for the grouping variable. This should be a single unquoted column name that selects a qualitative variable for grouping. Default to
NULL
. When.by = NULL
no grouping will take place.
Details
This function does nothing to the predictions. It is used as a reference when tuning over different calibration methods.
Examples
nada <- cal_estimate_none(boosting_predictions_oob, outcome, .pred)
nada
#>
#> ── Regression Calibration
#> Method: No calibration
#> Source class: Data Frame
#> Data points: 2,000
#> Truth variable: `outcome`
#> Estimate variable: `.pred`
identical(
cal_apply(boosting_predictions_oob, nada),
boosting_predictions_oob
)
#> [1] TRUE
# ------------------------------------------------------------------------------
nichts <- cal_estimate_none(segment_logistic, Class)
identical(
cal_apply(segment_logistic, nichts),
segment_logistic
)
#> [1] TRUE